Lower Estimates of Transition Densities and Bounds on Exponential Ergodicity for Stochastic Pde’s
نویسندگان
چکیده
A formula for the transition density of a Markov process defined by an infinite-dimensional stochastic equation is given in terms of the Ornstein–Uhlenbeck bridge and a useful lower estimate on the density is provided. As a consequence, uniform exponential ergodicity and V ergodicity are proved for a large class of equations. We also provide computable bounds on the convergence rates and the spectral gap for the Markov semigroups defined by the equations. The bounds turn out to be uniform with respect to a large family of nonlinear drift coefficients. Examples of finite-dimensional stochastic equations and semilinear parabolic equations are given.
منابع مشابه
Lower Estimates of Transition Densities and Bounds on Exponential Ergodicity for Stochastic Pde’s B. Goldys and B. Maslowski
A formula for the transition density of a Markov process defined by an infinitedimensional stochastic equation is given in terms of the Ornstein Uhlenbeck Bridge, and a useful lower estimate on the density is provided. As a consequence, uniform exponential ergodicity and V-ergodicity are proven under suitable conditions for a large class of equations. The method allows us to find computable bou...
متن کاملStochastic Comparisons of Series and Parallel Systems with Heterogeneous Extended Generalized Exponential Components
In this paper, we discuss the usual stochastic‎, ‎likelihood ratio, ‎dispersive and convex transform order between two parallel systems with independent heterogeneous extended generalized exponential components. ‎We also establish the usual stochastic order between series systems from two independent heterogeneous extended generalized exponential samples. ‎Finally, ‎we f...
متن کاملOn $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes
In the present paper we investigate the $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes with general state spaces. We provide a necessary and sufficient condition for such processes to satisfy the $L_1$-weak ergodicity. Moreover, we apply the obtained results to establish $L_1$-weak ergodicity of quadratic stochastic processes.
متن کاملLower And Upper Bounds For The Time Constant Of First-Passage Percolation
We present improved lower and upper bounds for the time constant of first-passage percolation on the square lattice. For the case of lower bounds, a new method, using the idea of a transition matrix, has been used. Numerical results for the exponential and uniform distributions are presented. A simulation study is included, which results in new estimates and improved upper confidence limits of ...
متن کاملExponential Ergodicity of Non-lipschitz Stochastic Differential Equations
Using the coupling method and Girsanov’s theorem, we study the strong Feller property and irreducibility for the transition probabilities of stochastic differential equations with non-Lipschitz and monotone coefficients. Then, the exponential ergodicity and the spectral gap for the corresponding transition semigroups are obtained under fewer assumptions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008